Tutorial 2 (ComplexNum+TrigIdentities)

(You should practise writing proper steps.)

- 1. Let z_1 and z_2 be two complex numbers given as $z_1 = 2 3i$ and $z_2 = 1 + 2i$. Compute the following.
 - (a) $z_1\overline{z}_1$
 - (b) $z_1 z_2$
 - (c) $(z_1 + 3z_2)^2$
 - (d) $[z_1 + (1+z_2)]^2$
- 2. Express the following in the form a + bi, where a and b are real numbers.
 - (a) $\frac{1+4i}{5-12i}$

(b)
$$(2+i)^3$$

(c)
$$3\sqrt{-50} + \sqrt{-72}$$

(d)
$$\frac{1}{5-3i} - \frac{1}{5+3i}$$

- 3. (a) What is Euler's formula?
 - (b) Use Euler's formula to derive the identities
 - (i) $\cos(\alpha + \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$
 - (ii) $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$
- 4. Prove the identities

(i)
$$\sin 2\theta = 2\sin\theta\cos\theta$$

(ii) $\cos 2\theta = \cos^2\theta - \sin^2\theta$

in two ways as described below.

(a) By setting $\alpha = \theta$ and $\beta = \theta$ in the identities $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$

(b) By using Euler's formula and the identity $e^{i(2\theta)} = (e^{i\theta})^2 = e^{i\theta} \cdot e^{i\theta}$

TMA1101 Calculus, T2, 2015/16

- 5. Derive the identity that expresses $\sin 3\theta$ in terms of $\sin \theta$ and $\cos \theta$ by using Euler's formula and the identity $e^{i(3\theta)} = (e^{i\theta})^3$.
- 6. Derive the identity that expresses $\cos 3\theta$ in terms of $\sin \theta$ and $\cos \theta$ by using Euler's formula and the identity $e^{i(3\theta)} = (e^{i\theta})^3$.
- 7. Express $\sin 4x \sin 5x$ in a form involving the difference of two cosines.
- 8. Express $\cos 5x \cos 2x$ in a form involving the sum of two cosines.
- 9. Express $\sin 5x \cos 2x$ in a form involving the sum of two sines.
- 10. Express $\cos 5x \sin 3x$ in a form involving the difference of two sines.
- 11. Derive the subtraction formulas
 - (i) $\cos(\alpha \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$
 - (ii) $\sin(\alpha \beta) = \sin \alpha \cos \beta \cos \alpha \sin \beta$

in two ways as described below.

- (a) By replacing β with $-\beta$ in the following two identities you have derived earlier $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$
- (b) By using Euler's formula and the identity $e^{i\alpha} \cdot e^{-i\beta} = e^{i(\alpha-\beta)}$
- 12. Obtain the addition formula and subtraction formula for tangent. Use the addition and subtraction formulas for sine and cosine to express $\tan(\alpha + \beta)$ and $\tan(\alpha - \beta)$ in terms of $\tan \alpha$ and $\tan \beta$.

[Note that
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
.]

13. Use the special angles $\alpha = \frac{4\pi}{3}$ and $\beta = \frac{\pi}{3}$ to verify that all the addition and subtraction formulas for sine, cosine and tangent hold. [*You may need help in understanding what this question asks.*]

(nby, Nov 2015)